CHAPTER 5. SOUTHERN PACIFIC OCEANIC OPERATIONS - 1. CENTRAL EAST PACIFIC (CEPAC) COMPOSITE AIRSPACE. CEPAC composite airspace is an organized route system, at or above flight levels (FL) 290 between the west coast of the continental United States and Hawaii, within the Honolulu and Oakland Control Areas (CTA) Flight Information Region (FIR). The organized route system between Hawaii and Los Angeles or San Francisco is comprised of six air traffic service (ATS) routes from FL 290 to FL 410. The same rules used for the North Pacific (NOPAC) routes apply to these routes, including mach number technique and contingencies. - 2. CENTRAL PACIFIC AREA (CENPAC). Oakland Oceanic CTA has designated the airspace south of G344 (southernmost NOPAC route) and north of Hawaii as the CENPAC area. Two air traffic routes have been constructed in this area: A227 and R339. These are standard ATS routes with no special separation requirements, and there are no special rules to file a flight plan or to fly on these routes. Just south of R339, a free flow boundary has been established. When operating north of this boundary, flight must be conducted on one of the five NOPAC routes or on A227 or R339. Random traffic is only authorized south of the free flow boundary. - 3. TOKYO-HONOLULU FLEXIBLE TRACK SYSTEM. A flexible track system (FTS) consisting of two flexible track routes (FTR) is permanently established between Tokyo and Honolulu to achieve more efficient use of the airspace for traffic operating at FL 290 or above. The routes are effective daily between 1200 coordinated universal time (UTC) and 1700 UTC within the Tokyo fix, and between 1300 UTC and 1900 UTC within the Oakland fix. The routes are published daily in Class 1 Notices to Airmen (NOTAM) and are designated "North FTS" and "South FTS." The FTS must be filed on the International Civil Aviation Organization (ICAO) flight plan by coordinates. ## 4. COMMUNICATIONS AND POSITION REPORTING. - a. Communications. Most CEPAC and CENPAC area communications are conducted on high frequency (HF), predominantly by single side band (SSB). Pilots communicate with control centers via oceanic radio stations. Aircraft reports, messages, and requests are relayed by the station to the appropriate air traffic control center (ATCC) by interphone, computer display, or teletype message. The relay function, coupled with the need for intercenter coordination, may cause delays in the handling of routine aircraft requests. There are priority message handling procedures for processing urgent messages that reduce any time lag; however, the crew should take possible delays into consideration when requesting step climbs, reroutes, or other routine requests requiring air traffic control (ATC) action. Delays can be reduced by advance planning of such requests. - b. Frequency monitoring. Aircraft should establish communications with the appropriate oceanic radio station upon entering a specific FIR. The station advises the aircraft of the primary and secondary HF frequencies in use. If possible, the flightcrew should monitor both of these frequencies. If only one frequency can be monitored, the primary should be guarded with the secondary being the first one checked in the event of lost communications on the primary frequency. If the selective calling (selcal) unit is working at the time of the initial contact, the crew should maintain a selcal watch on the appropriate frequencies. If the selcal unit is inoperative, or if the radio station has a malfunctioning selcal transmitter, the crew should maintain a listening watch. The oceanic station guarding for flight operations is normally the station associated with the ATCC responsible for the FIR (i.e., Honolulu Aeronautical Radio, Incorporated (ARINC) for the Anchorage FIR and Tokyo Radio for the Tokyo FIR). At the FIR boundary the responsibility for the guard is changed, under normal signal conditions, to the station associated with each new FIR. The flightcrew must ensure that it has established communications with the new guard facility. Normally, each oceanic radio station continuously listens on all assigned frequencies. If en route HF communications fail, every effort should be made by the flightcrew to relay progress reports through other aircraft. The very high frequency nonscheduled commercial aircraft landing for commercial purposes must obtain permission from the Secretary, Air Transport Licensing Authority, P.O. Box N975, Nassau, New Providence, Bahamas, prior to departure. ## b. Special Notices. - (1) Flights made between sunset and sunrise must be conducted under instrument flight rules (IFR). With the exception of Freeport International and Nassau International Airports, no aircraft will be permitted to land or take off at any location in the Bahamas between sunset and sunrise without prior approval from the Director of Civil Aviation. - (2) New Providence Nassau: Amphibious aircraft on international flights landing at the Nassau Marine Base must first land at Nassau International Airport for customs and immigration clearance. - (3) Before turning onto final approach and taxiing out for takeoff, it is recommended that pilots announce their identification, location, and intention on 122.8 megahertz (MHz) at uncontrolled airports. Arriving aircraft should fly over the airstrip at 1,000 feet above ground level to observe other traffic and fly a left-hand pattern. Extreme caution should be exercised when flying an approach or taking off from any of the outer islands. These fields are uncontrolled, but the attractiveness of the Caribbean makes them very popular destinations for both commercial operators and pleasure pilots. A wide range in crew island-flying ability levels often exists, and aircraft using these uncontrolled fields have significant differences in performance capabilities. ## 3. CUBA. - a. Personal Entry Requirements. The accuracy and currency of the following information is uncertain because of the difficulty in obtaining information about this country. All aircraft arriving from or departing for Cuba must land at or depart from Miami International Airport. A passport and a visa are required. - b. Aircraft Entry Requirements. All private and nonscheduled commercial aircraft overflying or landing for commercial or noncommercial purposes must obtain prior approval from the Ministerio Del Transporte Area Aeronautica, Calle 23-No. 64 Vedado, Plaza de la Revolucion, Cuidad de La Habana 4, Cuba at least 48 hours prior to overflying, and at least 10 days prior if landing. All requests must include provisions for prepaid reply. All requests must include the following information: - Name, nationality and address of the aircraft operator. - Aircraft type and registration marks. - Name of pilot-in-command (PIC). - Place of origin and destination. - Air corridor and routes to be used under the flight plan. - Date of the flight. - Purpose of the flight. - Number of passengers and type and amount of cargo. - Statements of third party insurance liability coverage. - Radio frequencies available. All flights into Cuban airspace, including those in the established air corridors of Maya, Giron, and Nuevas, must be able to establish and maintain communications with Havana flight information region (FIR)/control area (CTA) 10 minutes prior to airspace entry. All flights must have a flight plan on file with Havana FIR/CTA at least 1 hour prior to airspace entry. In addition, any aircraft overflying or landing in Cuba must carry the following documents on board: